Selected Solutions for Chapter 11:
 Hash Tables

Solution to Exercise 11.2-1

For each pair of keys k, l, where $k \neq l$, define the indicator random variable $X_{k l}=\mathrm{I}\{h(k)=h(l)\}$. Since we assume simple uniform hashing, $\operatorname{Pr}\left\{X_{k l}=1\right\}=$ $\operatorname{Pr}\{h(k)=h(l)\}=1 / m$, and so $\mathrm{E}\left[X_{k l}\right]=1 / m$.
Now define the random variable Y to be the total number of collisions, so that $Y=\sum_{k \neq l} X_{k l}$. The expected number of collisions is
$\mathrm{E}[Y]=\mathrm{E}\left[\sum_{k \neq l} X_{k l}\right]$
$=\sum_{k \neq l} \mathrm{E}\left[X_{k l}\right] \quad$ (linearity of expectation)
$=\binom{n}{2} \frac{1}{m}$
$=\frac{n(n-1)}{2} \cdot \frac{1}{m}$
$=\frac{n(n-1)}{2 m}$.

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

- A free slot is in the free list, a doubly linked list of all free slots in the table. The slot thus contains two pointers.
- A used slot contains an element and a pointer (possibly NIL) to the next element that hashes to this slot. (Of course, that pointer points to another slot in the table.)

Operations

- Insertion:

- If the element hashes to a free slot, just remove the slot from the free list and store the element there (with a NIL pointer). The free list must be doubly linked in order for this deletion to run in $O(1)$ time.
- If the element hashes to a used slot j, check whether the element x already there "belongs" there (its key also hashes to slot j).
- If so, add the new element to the chain of elements in this slot. To do so, allocate a free slot (e.g., take the head of the free list) for the new element and put this new slot at the head of the list pointed to by the hashed-to slot (j).
- If not, E is part of another slot's chain. Move it to a new slot by allocating one from the free list, copying the old slot's (j 's) contents (element x and pointer) to the new slot, and updating the pointer in the slot that pointed to j to point to the new slot. Then insert the new element in the now-empty slot as usual.
To update the pointer to j, it is necessary to find it by searching the chain of elements starting in the slot x hashes to.
- Deletion: Let j be the slot the element x to be deleted hashes to.
- If x is the only element in j (j doesn't point to any other entries), just free the slot, returning it to the head of the free list.
- If x is in j but there's a pointer to a chain of other elements, move the first pointed-to entry to slot j and free the slot it was in.
- If x is found by following a pointer from j, just free x 's slot and splice it out of the chain (i.e., update the slot that pointed to x to point to x 's successor).
- Searching: Check the slot the key hashes to, and if that is not the desired element, follow the chain of pointers from the slot.

All the operations take expected $O(1)$ times for the same reason they do with the version in the book: The expected time to search the chains is $O(1+\alpha)$ regardless of where the chains are stored, and the fact that all the elements are stored in the table means that $\alpha \leq 1$. If the free list were singly linked, then operations that involved removing an arbitrary slot from the free list would not run in $O(1)$ time.

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probability $1 / n$. Suppose we select a specific set of k keys. The probability that these k keys are inserted into the slot in question and that all other keys are inserted elsewhere is

$$
\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k} .
$$

Since there are $\binom{n}{k}$ ways to choose our k keys, we get

$$
Q_{k}=\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k}\binom{n}{k} .
$$

b. For $i=1,2, \ldots, n$, let X_{i} be a random variable denoting the number of keys that hash to slot i, and let A_{i} be the event that $X_{i}=k$, i.e., that exactly k keys hash to slot i. From part (a), we have $\operatorname{Pr}\{A\}=Q_{k}$. Then,

$$
\begin{aligned}
P_{k} & =\operatorname{Pr}\{M=k\} \\
& =\operatorname{Pr}\left\{\left(\max _{1 \leq i \leq n} X_{i}\right)=k\right\} \\
& =\operatorname{Pr}\left\{\text { there exists } i \text { such that } X_{i}=k \text { and that } X_{i} \leq k \text { for } i=1,2, \ldots, n\right\} \\
& \leq \operatorname{Pr}\left\{\text { there exists } i \text { such that } X_{i}=k\right\} \\
& =\operatorname{Pr}\left\{A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right\} \\
& \leq \operatorname{Pr}\left\{A_{1}\right\}+\operatorname{Pr}\left\{A_{2}\right\}+\cdots+\operatorname{Pr}\left\{A_{n}\right\} \quad \text { (by inequality (C.19)) } \\
& =n Q_{k} .
\end{aligned}
$$

c. We start by showing two facts. First, $1-1 / n<1$, which implies $(1-1 / n)^{n-k}<1$. Second, $n!/(n-k)!=n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)<n^{k}$. Using these facts, along with the simplification $k!>(k / e)^{k}$ of equation (3.18), we have

$$
\begin{array}{rlrl}
Q_{k} & =\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k} \frac{n!}{k!(n-k)!} & \\
& <\frac{n!}{n^{k} k!(n-k)!} & & \left((1-1 / n)^{n-k}<1\right) \\
& <\frac{1}{k!} & & \left(n!/(n-k)!<n^{k}\right) \\
& <\frac{e^{k}}{k^{k}} & & \left(k!>(k / e)^{k}\right) .
\end{array}
$$

d. Notice that when $n=2, \lg \lg n=0$, so to be precise, we need to assume that $n \geq 3$.
In part (c), we showed that $Q_{k}<e^{k} / k^{k}$ for any k; in particular, this inequality holds for k_{0}. Thus, it suffices to show that $e^{k_{0}} / k_{0}{ }^{k_{0}}<1 / n^{3}$ or, equivalently, that $n^{3}<k_{0}{ }^{k_{0}} / e^{k_{0}}$.
Taking logarithms of both sides gives an equivalent condition:

$$
\begin{aligned}
3 \lg n & <k_{0}\left(\lg k_{0}-\lg e\right) \\
& =\frac{c \lg n}{\lg \lg n}(\lg c+\lg \lg n-\lg \lg \lg n-\lg e)
\end{aligned}
$$

Dividing both sides by $\lg n$ gives the condition

$$
\begin{aligned}
3 & <\frac{c}{\lg \lg n}(\lg c+\lg \lg n-\lg \lg \lg n-\lg e) \\
& =c\left(1+\frac{\lg c-\lg e}{\lg \lg n}-\frac{\lg \lg \lg n}{\lg \lg n}\right) .
\end{aligned}
$$

Let x be the last expression in parentheses:

$$
x=\left(1+\frac{\lg c-\lg e}{\lg \lg n}-\frac{\lg \lg \lg n}{\lg \lg n}\right) .
$$

We need to show that there exists a constant $c>1$ such that $3<c x$.
Noting that $\lim _{n \rightarrow \infty} x=1$, we see that there exists n_{0} such that $x \geq 1 / 2$ for all $n \geq n_{0}$. Thus, any constant $c>6$ works for $n \geq n_{0}$.
We handle smaller values of n-in particular, $3 \leq n<n_{0}$-as follows. Since n is constrained to be an integer, there are a finite number of n in the range $3 \leq n<n_{0}$. We can evaluate the expression x for each such value of n and determine a value of c for which $3<c x$ for all values of n. The final value of c that we use is the larger of

- 6 , which works for all $n \geq n_{0}$, and
- $\max _{3 \leq n<n_{0}}\{c: 3<c x\}$, i.e., the largest value of c that we chose for the range $3 \leq n<n_{0}$.

Thus, we have shown that $Q_{k_{0}}<1 / n^{3}$, as desired.
To see that $P_{k}<1 / n^{2}$ for $k \geq k_{0}$, we observe that by part (b), $P_{k} \leq n Q_{k}$ for all k. Choosing $k=k_{0}$ gives $P_{k_{0}} \leq n Q_{k_{0}}<n \cdot\left(1 / n^{3}\right)=1 / n^{2}$. For $k>k_{0}$, we will show that we can pick the constant c such that $Q_{k}<1 / n^{3}$ for all $k \geq k_{0}$, and thus conclude that $P_{k}<1 / n^{2}$ for all $k \geq k_{0}$.
To pick c as required, we let c be large enough that $k_{0}>3>e$. Then $e / k<1$ for all $k \geq k_{0}$, and so e^{k} / k^{k} decreases as k increases. Thus,

$$
\begin{aligned}
Q_{k} & <e^{k} / k^{k} \\
& \leq e^{k_{0}} / k^{k_{0}} \\
& <1 / n^{3}
\end{aligned}
$$

for $k \geq k_{0}$.
e. The expectation of M is

$$
\begin{aligned}
\mathrm{E}[M] & =\sum_{k=0}^{n} k \cdot \operatorname{Pr}\{M=k\} \\
& =\sum_{k=0}^{k_{0}} k \cdot \operatorname{Pr}\{M=k\}+\sum_{k=k_{0}+1}^{n} k \cdot \operatorname{Pr}\{M=k\} \\
& \leq \sum_{k=0}^{k_{0}} k_{0} \cdot \operatorname{Pr}\{M=k\}+\sum_{k=k_{0}+1}^{n} n \cdot \operatorname{Pr}\{M=k\} \\
& \leq k_{0} \sum_{k=0}^{k_{0}} \operatorname{Pr}\{M=k\}+n \sum_{k=k_{0}+1}^{n} \operatorname{Pr}\{M=k\} \\
& =k_{0} \cdot \operatorname{Pr}\left\{M \leq k_{0}\right\}+n \cdot \operatorname{Pr}\left\{M>k_{0}\right\},
\end{aligned}
$$

which is what we needed to show, since $k_{0}=c \lg n / \lg \lg n$.
To show that $\mathrm{E}[M]=O(\lg n / \lg \lg n)$, note that $\operatorname{Pr}\left\{M \leq k_{0}\right\} \leq 1$ and

$$
\begin{aligned}
\operatorname{Pr}\left\{M>k_{0}\right\} & =\sum_{k=k_{0}+1}^{n} \operatorname{Pr}\{M=k\} \\
& =\sum_{k=k_{0}+1}^{n} P_{k} \\
& <\sum_{k=k_{0}+1}^{n} 1 / n^{2} \quad \text { (by part (d)) } \\
& <n \cdot\left(1 / n^{2}\right) \\
& =1 / n .
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
\mathrm{E}[M] & \leq k_{0} \cdot 1+n \cdot(1 / n) \\
& =k_{0}+1 \\
& =O(\lg n / \lg \lg n) .
\end{aligned}
$$

